KPZ in one dimensional random geometry of multiplicative cascades

نویسندگان

  • Itai Benjamini
  • Oded Schramm
چکیده

We prove a formula relating the Hausdorff dimension of a subset of the unit interval and the Hausdorff dimension of the same set with respect to a random path matric on the interval, which is generated using a multiplicative cascade. When the random variables generating the cascade are exponentials of Gaussians, the well known KPZ formula of Knizhnik, Polyakov and Zamolodchikov from quantum gravity [KPZ88] appears. This note was inspired by the recent work of Duplantier and Sheffield [DS08] proving a somewhat different version of the KPZ formula for Liouville gravity. In contrast with the Liouville gravity setting, the one dimensional multiplicative cascade framework facilitates the determination of the Hausdorff dimension, rather than some expected box count dimension.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusions of Multiplicative Cascades

A multiplicative cascade can be thought of as a randomization of a measure on the boundary of a tree, constructed from an iid collection of random variables attached to the tree vertices. Given an initial measure with certain regularity properties, we construct a continuous time, measure-valued process whose value at each time is a cascade of the initial one. We do this by replacing the random ...

متن کامل

Gaussian multiplicative chaos and KPZ duality

This paper is concerned with the construction of atomic Gaussian multiplicative chaos and the KPZ formula in Liouville quantum gravity. On the first hand, we construct purely atomic random measures corresponding to values of the parameter γ2 beyond the transition phase (i.e. γ2 > 2d) and check the duality relation with sub-critical Gaussian multiplicative chaos. On the other hand, we give a sim...

متن کامل

Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class.

Following our numerical work [Phys. Rev. Lett. 109, 170602 (2012)] focused upon the 2+1 Kardar-Parisi-Zhang (KPZ) equation with flat initial condition, we return here to study, in depth, the three-dimensional (3D) radial KPZ problem, comparing common scaling phenomena exhibited by the pt-pt directed polymer in a random medium (DPRM), the stochastic heat equation (SHE) with multiplicative noise ...

متن کامل

Universal aspects of curved, flat, and stationary-state Kardar-Parisi-Zhang statistics.

Motivated by the recent exact solution of the stationary-state Kardar-Parisi-Zhang (KPZ) statistics by Imamura and Sasamoto [ Phys. Rev. Lett. 108 190603 (2012)], as well as a precursor experimental signature unearthed by Takeuchi [ Phys. Rev. Lett. 110 210604 (2013)], we establish here the universality of these phenomena, examining scaling behaviors of directed polymers in a random medium, the...

متن کامل

Moments Match between the KPZ Equation and the Airy Point Process

The results of Amir–Corwin–Quastel, Calabrese–Le Doussal–Rosso, Dotsenko, and Sasamoto–Spohn imply that the one-point distribution of the solution of the KPZ equation with the narrow wedge initial condition coincides with that for a multiplicative statistics of the Airy determinantal random point process. Taking Taylor coefficients of the two sides yields moment identities. We provide a simple ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008